fastai v2.7.8
forums.fast.ai: @laurentprudhon
Twitter : @prudholu
Concepts
Concepts - Data loading
Concepts - Model training
Concepts - Learner lifecycle
Learner
Learner - Create an instance
Learner - Init, Attributes
Learner - Training methods
Learner - Inference methods
Visualize
Diagnostics - How to debug
Show - Inputs, targets, predictions
Show - Images
Show - Text, points, boxes, tables
Plot - Training loop
Evaluate
Model evaluation - Interpretation
Metrics - 1/2
Metrics - 2/2
Training
Learner - Training loop 1/2
Learner - Training loop 2/2
Learner - Customize training loop
Learner - Callbacks 1/2
Learner - Callbacks 2/2
Learner - Context managers
Inference
Learner - Public methods call tree
Learner - validate and Recorder
Learner - get_preds and Loss function
Learner - predict and DataLoader
Learner - show_results and DataLoader
DataLoader
DataLoaders - Create an instance
DataLoaders - Interface
DataLoader - Interface
DataLoader - Init
DataLoader - iter() and next()
DataLoader - TfmdDL
DataLoader - TfmdDL subclasses
Dataset
Dataset - Interface
Dataset - TfmdLists
Dataset - Datasets
Dataset - Tabular datasets
DataBlock
DataBlock
DataBlock - Init data pipeline
TransformBlocks - Labels
TransformBlocks - Vision
TransformBlocks - Text
Download
Download datasets and models
Download - Directories config
Load
Dataset, Model, Learner - Directories
Get items
Splitters
Getters
Transform
Transforms for labels
Vision
Type Transforms - Vision
Item Transforms - Vision
Data augmentation - Vision 1/4
Data augmentation - Vision 2/4
Data augmentation - Vision 3/4
Data augmentation - Vision 4/4
Text
Type Transforms - Text
Item Transforms - Text
Tabular
Tabular datasets and transforms
Optimizer
Optimizer
Optimizers
Optimizer - Hyperparameters scheduling
Model
Create model - Vision
Create Model - Text, GAN
Pytorch
Modules - Functions, Shapes, Pooling
Modules - Combine layers, In Out
Modules - Activations, Norms
Modules - Convolutions, Attention
Modules - Text sequences, Dropout
Modules - Unet, GAN, Tabular
Loss
Loss function - Interface
Loss functions - Classification, Regression
Summary
Summary - DataBlock
Summary - DataLoaders
Summary - Learner
Implementation notes
Distributed Training
Concepts
Learner
Visualize
Evaluate
Training
Inference
DataLoader
Dataset
DataBlock
Download
Load
Transform
Vision
Text
Tabular
Optimizer
Model
Pytorch
Loss
Summary